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Exactly soluble limit of d 3  field theory with internal 
Potts symmetry 

D J Amit and D V I Roginsky 
Racah Institute of Physics, Hebrew University, Jerusalem, Israel 

Received 1 August 1978 

Abstract. We consider a field theory in which the fields form a (2[+1)-dimensional 
(complex) irreducible representation of SO(3). This theory contains an additional internal 
discrete symmetry of the 3-state Potts model. There exists only one quadratic and one cubic 
invariant. There are many quartic invariants, but they are irrelevant below six dimensions 
as far as the infra-red behaviour is concerned. It is shown that as I +CO the model becomes 
soluble. In contrast to the infinite N limit here it is the wavefunction, rather than the 
coupling constant, that is renormalised in a nontrivial way, as well as b2.  

The asymptotic behaviour of the infinite I limit is analysed explicitly, and compared with 
renormalisation group results. 

1. Introduction 

The number of soluble interacting field theories is so small that every possible candidate 
deserves careful study. The importance of such models is very great, both as checks on 
approximations made on realistic field theories, and as a source of hypotheses on the 
behaviour of such theories. 

A classic case in point is the infinite N limit of Landau-Ginzburg-Wilson model 
which was proved equivalent to the spherical model (Stanley 1971, Kac and Thompson 
197 1) of Berlin and Kac (1952). This soluble model has proved to be extremely fruitful 
in statistical physics as well as in particle physics. 

The salient features of this model are an interaction of quartic type with an O ( N )  
symmetry. The fields constitute an N dimensional basis of this representation. On 
calculating perturbation theory one finds that graphs with different topological struc- 
tures have numerical coefficients which behave as different powers of N, for large N .  
For the two-point function the leading graphs at euery order are the mass insertions; for 
the four-point function these are the bubbles and mass insertions etc. 

One chooses the coupling constant to decrease with N so that the leading graphs ut 
every order have a coefficient whose asymptotic dependence on N is like that of the tree 
approximation. The rest of the graphs vanish in this limit. The important point is that 
this limit leads to a well defined nontrivial model, in contrast to such limits (which 
provide trivial solvability) as a vanishing charge in electrodynamics. 

Coleman eta1 (1974) have tried to discredit the statement that one attains an exactly 
soluble model when N + 00, by comparing it with a statement that the Born approxima- 
tion becomes exact as e + 0 in electrodynamics. But the equivalence to the spherical 
model shows that the situation is very different. 
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The fact that graphs with different topological structures have different powers of N 
stems from the fact that O ( N )  is a continuous symmetry, though we do not know of any 
general statement to this effect. The permutation symmetry alone would not produce a 
significant discrimination between graphs. This fact has prevented the appearance of 
soluble versions of the Potts model (Potts 1952, Ashkin and Teller 19.43). 

The (n+l)-s ta te  Potts-model can be described by a field theory with n real 
components (Zia and Wallace 1975) and a Lagrangian of the form: 

L = ~ ( v 4 ) 2 + ~ m ~ 4 2 + ( 1 / 3 ! ) g 3 ~ Q i j k ~ i ~ , ~ k  * * (1.1) 

The , . , stands for operators with more fields. The numerical tensor Q is the trilinear 
hypertetrahedral invariant constructed explicitly by Zia and Wallace (1975). 

This model has been of considerable interest recently. Some of the applications 
associated with it are listed in (Amit 1976). Nevertheless there are still many puzzles 
associated with the theoretical study of the Potts model. To list but a few: 

(i) The appearance of a fixed point in a theory whose mean-field approximation (the 
classical limit) predicts a discontinuous transition. 

(ii) The meaning of the disappearance of the fixed point as the number of 
components increases or, equivalently, for a fixed number of components as the number 
of dimensions decreases. 

(iii) Since one expands about six dimensions, how far can the E expansion remain 
meaningful. 

As all previous work on the model except (Golner 1973) has used the E expansion 
about d = 6 (see e.g. Amit and Scherbakov 1974, Priest and Lubensky 1976, Amit 
1976, Amit et a1 1977), a limit-model soluble in an arbitrary number of dimensions is 
very desirable. This has been one of the central roles of the infinite N limit, namely, to 
give results beyond the E expansion. 

The hypertetrahedral symmetry of the cubic term in the Lagrangian (1.1) is discrete, 
and an increase in the number of components does not lead to any useful discrimination 
between graphs. 

In the present article we show that this shortcoming can be circumvented in the case 
n = 2-the three-state Potts model-by superimposing a continuous symmetry on top 
of the discrete symmetry of three elements. The fields become a complex (21 + 1)- 
dimensional irreducible representation of S0(3),  and as 1 -* CO only graphs with simple 
topological structures survive. Terms beyond the cubic one are ignored since they are 
irrelevant for d < 6 (Amit 1976). The perturbation series is summed and integral 
equations result for the two-point function and for its temperature derivative, while the 
three-point function in this limit is identical to its Born approximation. 

The asymptotic behaviour of the solutions of these integral equations are studied in 
detail and compared with results from the E expansion. Apart from a description of the 
solvable limit we touch here only on issues (ii) and (iii) raised above. The result we find 
is that, while the two-point function scales everywhere in 3 < d 6, its temperature 
derivative scales only in a small part of this interval near d = 6. 

2. Description of the model 
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It may be rewritten in terms of a complex field 

4 = 2-"2(q+1 +id21 4 = (dl,d2) (2.2) 

as 

L = V$*V$ +p2$*$  + (J2/3!)g3&b3 + $*3) + (1/3!)g40($*$)~ (2.3) 

where the asterisk denotes complex conjugation. 
The invariance group of the model is the 6-element symmetric group S 3  (the group 

of permutations of three symbols), isomorphic to the crystallographic point group C3v 
and to the dihedral group D3. The field transformations that leave the Lagrangian (2.1) 
invariant are the rotations through angles 2 m / 3  (n = 0, 1 ,2)  in the (dl, d2) plane and 
the reflections d2 + -&. In terms of $ the invariance group is represented by the linear 
transformations 

$ + exp ( i2m/3)  n = 0, 1 , 2  ( 2 . 4 ~ )  

and the antilinear ones 

4 + $* exp(i2m/3) n =o,  1 ,2 .  (2.4b) 

We define an extended multicomponent version of this model, which will still be 
invariant under the transformations (2.4) of each component of the field. Namely, the 
field has N (  = 21 + 1) complex components $,, and L will be invariant under: 

When passing to a multicomponent model, it is natural to extend the invariance group 
of the model in a way which (1) conserves in the best way the properties of the original 
model and (2) simplifies the problem. Wcchoose the invariance group of the extended 
model to be: 

S 3  X SU(2) C3" x SU(2) D3 x SU(2). (2.6) 

The field {Jim} is transformed under the N dimensional irreducible representation of 
SU(2). That is: 

$m + $m.D(l'm' m ( u )  U E SU(2). (2.7) 

This choice of the symmetry group ensures the existence of a unique trilinear invariant 
for any even 1, which is 

and none for odd values of 1. The coefficients are the 3j-symbols (Wigner coefficients.) 
This is the highest relevant operator for d <6 .  (For an odd value of 1 the 3j-symbol 
would have been antisymmetric in its indices and the invariant (2.8) would have 
vanished). Here I is chosen to be even and the 3j-symbol is thus symmetric in ml, m2, 
m3. 
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The Lagrangian of the extended model is: 

Equation (2.3) is the 1 = 0 case of equation (2.9) if g k .  = g 4 0 .  We use real Wigner 
coefficients with upper and lower indices. The raising and lowering of indices is defined 
via: 

(2.10) 

for any index m. Summation over doubly repeated indices is implied. Instead of writing 
the complex conjugate of the fields as in equation (2.3), we use in (2.9) a notation 6" in 
order to make the invariance of the various terms explicit. One should recall, however, 
that: 

l-mA--m A" = (-l)'+mA-, A, E (-1) 

im = (2.11) 

Finally, for even 1 there is an identity 

(2.12) 

The modification of the Lagrangian from (2.3) to (2.9) is analogous to giving isospin 1 
to the 'particle' described by the field 4; we will call the index m 'isospin index' for the 
sake of brevity. 

We consider the Lagrangian (2.9) with g y i  = 0. This is justified by the observation 
that if a critical point exists for d < 6 the infrared behaviour will be dominated by the 
trilinear term. The quadrilinear one will be irrelevant. It is convenient to introduce 

go = (J2/ JN)g3o (2.13) 

which will be held finite in the large N limit-the simplifying limit of our model. This 
will be shown to lead to correlation functions and free energy (the sum of vacuum 
graphs) which depend on N like their Born terms as is needed. The free energy 
becomes proportional to N and the two-point function independent of N in the large N 
limit. 

The Lagrangian of the model is finally 

L = V$"V*, + /.L21jm*, 

3. Considerations concerning the graph expansion 

The bare propagator and vertex part 

GGjm2 (PI = S ; : ( p 2    CL^)-' 

(2.14) 
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are the products of 'isoscalar' and 'isospin' factors, which suggest the application of 
separate graphical techniques for the spatial and 'isospin' coordinates. 

Figure 1. Propagators and vertices for the construction of the spatial part of graphs. The 
arrows distinguish $ from 6. 

It turns out to be convenient not to insert the J N  coefficient of equation (3.2) into 
the graphical notations but to multiply the contribution of a Feynman graph by N"" in 
the n th order of perturbation theory. 

Figure 2 comprises the basic notation of the angular momentum graphical technique 
of Levinson (1957) as extended by Jucys et a1 (1960) and by Jucys and Bandzaitis 
(1965)t. The notations of figure 2 differ slightly from those generally used because we 
confine ourself to even values of 1. The signs used to denote the orientation of a node 
(the order of indices of the Wigner coefficients) are omitted. Note also that only 
external 'isospin' lines must have arrows because 

A,B" =A"B, (3.3) 
if I is even. 

Figure 2. Propagators and vertices for the isospin part of graphs. The arrows distinguish 
between upper and lower indices. 

According to the notation of figures 1 and 2 the propagator (3.1) is represented by 
the pair of lines. We will alternatively use a wavy line to represent the pair as in figure 3. 

- - -  - - -  - E  

Figure 3. The combined space and isospin propagator. 

Since 4*( = +km3/") is an 'isoscalar', an insertion of 4' changes the 'spatial' pro- 
pagator only, as is shown in figure 4. 

t Similar graphical methods were introduced by Edmonds (1957) and Judd (1963); a 'dual' of Levinson 
graphical algorithms are those of Fano and Racah (1959); another version of the graphical techniques is used 
by Ponzano and Regge (1968). 
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- - - - - - - -  - 
A 

Figure 4. The d* insertion. 

The contribution of a Feynman graph to a vertex function 
r ( E  M) 

( I ) ’ , ,  ,....m,({pi); {k j } )  

( M  is the number of d 2  insertions) is a product of 
(1) the ‘isospin zero’ Feynman graph I‘{$‘)(bi}; {k,})  of the Lagrangian (2.3) with 

g40=0, 42g30=g0 (this factor is independent of N )  and two N dependent, but 
momentum independent, factors: 

(2) the ‘isospin’ angular momentum graph A ~ ~ k l , , . . , m E  (independent of M )  and 
(3) the overall coefficient N“’2 for the nth order of perturbation theory. 
Both graphs-the spatial one and the isospin one-are topologically identical, if one 

disregards the q52 insertions. 

4. The isospin structure of r(*) and 1’(3) 

The relevant vertex functions of the model are those with (E,  M )  = (0, 0), (0,2), (2,0), 
( 2 , l )  and (3,O). These are primitively ultraviolet divergent. The ‘isospin’ graph is a 
closed graph when E = 0; it is reduced to a closed ‘isoscalar’ graph when E = 2 or 3 due 
to the identities depicted in figure 5 and their generalisations (figure 6). 

Figure 5. The basic identities of the angular momentum ‘isospin’ graphical technique. The 
tetrahedron represents the Racah-Wigner 6j-symbol. 

Figure 6. The identities which make the isospin structure of r(2) and r(3) explicit (Jucys 
1960, equations (13.10, 13.8)). 

It is therefore sufficient to consider only closed angular momentum graphs, that is 
the isoscalar ones. Such a graph represents a 3nj-coefficient if it contains 2n nodes and 
(thus) 3n vertices. 
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If a closed angular momenta graph is two- or three-particle irreducible it is identical 
to the product of two simpler graphs as is shown graphically in figure 7 (see Jucys et a1 
1960, equations (14.5), (14.8)). 

A three-particle irreducible graph is a nontrivial 3nj-coefficient. (Generally only 
these ones are called 3nj-symbols while others are called j-coefficients). 

Figure 7. Factorisation of 2- and 3- particle reducible isospin graphs 

5. Large N limit-general properties of the model 

Consider a closed 2PR isospin graph. It can be reduced to two simpler graphs with the 
help of figure 7 .  Suppose that any of the two graphs obtained by this reduction is either 
the trivial 2PI graph (figure 8) or itself 2PR, and admits a similar reduction. If no 2PI 
graphs arise in such successive reductions except for the trivial one (figure 8) we call the 
graph 'fully 2PR'. 

/-I - 
/ I '  , E1 ', I / * '  

Figure 8. The simplest 2PI closed 'isospin' graph. 

The second identity in figure 7 (together with figure 8) implies that such a fully 2PR 

(5.1) 

Any other closed graph with 2n nodes is either a conventional (irreducible) 3nj- 
coefficient or a product of the type: 

N-"" . (3nlJ) . (3n2]) .  . . (3nkj) n=no+n1+ . . .  + n k - k + l  (5.2) 
where (3nj)  stands for the (3nj)-coefficient. 

In the large 1 limit the conventional 3nj-coefficients ( n  a 2 )  can be shown to be 
asymptotically negligible compared with the fully 2PR ones. That is 

3nj-coefficient (the most trivial nonvanishing one) is equal to 
N-n+1 

i(3nj)l N-"+l-e f f > O  N(or I )  + CO. (5.3) 
For simple types of general 3nj-coefficients this statement can be proved. We could 

not find a general proof of this asymptotic inequality, but the arguments, presented in 
Appendix I, together with numerical computations of the coefficients up to the 24j, 
convince us that the statement is generally true, and that a 2 i. Hence, any graph which 
is not fully 2PR contributes less than 

(5.4) 
N-no-n , - , . . - n ,+k-a  = ~ - n + l - a  

ff = & ' 1 + . . . f & ' k > 0 ,  n 2 2  

and is thus asymptotically negligible. 
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In the large N limit only those of the Feynman graphs, whose isospin closed graphs 
are fully 2PR, contribue to r(O), r(o*2) 9 ,  r(') r(2*1) a nd I'(3). 

5.1. The free energy 

In the kth order of perturbation theory (k = 2n) the N-dependence of the vacuum to 
vacuum vertex function I'(OrO), given by the overall power of N multiplied by (5.1) is 

( 5 . 5 )  ~ k / 2  . N-n+1 = N 

as it should. (See Q 3 for the overall factor). The same is true for the energy-energy 
correlation function r(OV2)  as well. 

5.2. The three-point vertex 

Figure 6 (the second identity) implies that 

The isoscalar function r(3)(p, N )  in the kth order of perturbation theory is given by a 
closed angular momentum graph A'3'(N) times Nk12 times an 'isospin zero' graph. 
Since the original graph of is 1P1, the reduced closed graph A'3'(N) is 2PI in any 
order k except for the first order. 

Thus in the large N limit the isospin dependent factor of r'3'(p, N) in the kth order is 

k = 2 n - 1 3 3  (5.7) Nk/ZA(3'(N) = N n - 1 / 2 N - n + l - Q  ,N1/2-Q - 

while in the first order it is equal to N1/', as is seen from equation (3.2). 

is asymptotically of the order of equation (5.3) with n = 2, a = 4 
For example, in 3rd order the isospin graph is that given in figure 5 .  The 6j-symbol 

(Wigner 1959). Multiplying by the explicit power of N, N3'2, appropriate to 3rd order, 
one finds that I"3'(p, N) at this order is proportional to No. Hence, all the corrections to 
the 1PI vertex part are negligible when N + 03, and the exact ri?)) is 

(5.9) 

which is just the Born term-equations (3.2) or (2.14). 
Furthermore, since asymptotically 

L m2 m3 
' ) 3N-1/2. (5.10) 

have finite limits as N + CO. 

1 1  

(Ponzano and Regge 1968), the components of 

(5.11) 
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The leading contribution in the large N limit is again given by the fully 2PR graphs 
and the isospin factor of both r( ’ ) (p,  N )  and C ( p ,  N )  in the kth order of perturbation 
theory (k = 2n) is 

(5.12) 

(which reproduces again the N dependence of the Born term), so that the large N limits 

Nk/ZN-lN-n+l = 1 

lim r(2)(p, N )  = r (p )  lim 2( p, N )  = C( p )  (5.13) 
N-m N-m 

are finite. 
The function T ( p )  and 2 ( p )  are connected by the Dyson equation 

(5.14) 

gz is the relative critical temperature. Recalling that the 3-point vertex in the large N 
limit is given by its Born term, we arrive at a Z ( p ) ,  which is the sum of the set of graphs in 
figure 9, and which can be translated to the language of skeleton graphs as is shown in 
figure 10. Figure 10 is simply the statement that all graphs in figure 9 are propagator 
corrections to the first one. 

2 2  
r ( p )  = p 2  + A w 2 - [ ~ ( p ) - ~ ( o ) 1  b 2 = w  - c L c  

.. n A A P a A  

Figure 9. Graphs contributing to the self-energy in the large N limit. 

0 U P )  = 

Figure 10. The self-energy in terms of skeleton graphs. The thick line represents the full 
Green function. 

Thus the Dyson equation of the model is a closed integral equation for G ( p ) :  

This should be compared with equations such as those of Patashinski and Pokrovski 
(1964). Note that there the equation is an arbitrary approximation to the skeleton 
series while here it is a well defined limit of the model. 

5.4. The vertex with 42 insertion 

The 4’ insertion is the insertion of a ‘isospin’ invariant $”$, and, consulting figure 6 ,  
one has: 

(5.16) 

with r(2*1)(pl, p z )  independent of N in the large N limit. r ‘ 2 s 1 ’ ( p l ,  p 2 )  is the sum of those 
graphs of the ‘isospinless’ model, whose isospin counterparts become fully 2PR closed 
graphs after the reduction with the help of figure 6 .  The difference from the case of r(2*o) 
is that although the d2 insertion does not change the isospin graph, corresponding to a 

r ( 2 . 1 ) m l  - 
( I ) m *  - 8 : p z s 1 ) ( p I ,  P 2 )  
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given 'isospinless' graph, it changes the set of the contributing graphs of the latter kind. 
Written in terms of skeleton graphs, to avoid listing all the propagator corrections, the 
contributions to r(2.1) as N + 00 are those shown in figure 11. It follows from figure 11 
that r(2*1) satisfies a linear integral equation 

(5.17) 

which together with (5.15) determines both functions. The special case of equation 
(5.17) when the momentum of the d2 is zero (that is p 2 =  - p l )  can be derived from 
equation (5.15) utilising the relation 

r ' 2 * 1 ' ( ~ 1 , ~ 2 ) =  l + g i  J ~ ~ ( 2 " ) ( p t - q , ~ ~ + q ) G ( ~ ) G ( ~ ~ - 4 ) G ( P ~ + q )  ddq 

(5.18) 

which means that the insertion of a 4' at zero momentum is equivalent to a derivative 
with respect to the temperature. This special case of the 1'(271) equation will be analysed 
in 0 8. 

Figure 11. The series of skeleton graphs contributing to I"'.') as N + 03. The thick lines are 
full propagators, and 0 denotes the insertion of &2. 

6. The correlation function at the critical point 

We study the system at its critical (massless) point. The parameters of the theory are 
chosen to be: 

~ = 6 - d .  (6.3) 

sd = [2d-1Td/2r(d/2)]-1 (6.4) 

The angular factor 

is absorbed into the coupling constant wo, and in all momentum integrals this factor will 
be omitted. The equation for the two-point function will take on the form: 

A 

G-'(P) =p2-&;A' dd4G(4)[G(p+q)-G(q)1. 

Assuming that G behaves asymptotically as 

G (  p)  - hA-'p"-2 

(6.5) 
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when p << A, one finds for the integral on the r.h.s. of equation (6.5) 

f ( p ,  A) = I A ddqq"-2(1p + q - q"-'). (6.7) 

This integral is convergent in the ultraviolet and well-defined in the infra-red, if 

(E/2) - 1 < 77 < ( 4 2 ) .  (6.8) 

We suppose that these inequalities hold, and show a posteriori that they indeed do. 

tion ('t Hooft and Veltman 1972, Amit 1978). The result is 
The leading term in f for A large, can then be computed by dimensional regularisa- 

lim f(p, A) = - C ( d ,  ~ ) p " ' + ~ "  (6.9) 
A - t w  

with: 

C ( d ,  77) = - $ ( i d ) r ( 2  - 77 - i d ) r 2 ( i d  - 1 + t V ) / [ r ( d  - 2 + 7)r2(1 - ;77)]. (6.10) 

Because of equation (6.8) the integral term dominates the p 2  in equation (6.5) for small 
p and one can find V ( d )  for which G of equation (6.6) satisfies (6.5) in the limit p + 0. 
The result is 77 = ~ / 3 ,  exactly. 

There is, of course, a transient, in the sense of Wilson (1972) given by the p 2  terms 
relative to p2-" .  But, for any E there is a characteristic value of p ,  po ,  such that the 
infra-red behaviour is attained for p << po. The value of p o  shrinks to zero if 77 is small 
(when E + 0, for example)-the transient is slow. This slow transient can be eliminated 
(Wilson 1972) by a special choice of wo-the fixed point. 

This again can be studied explicitly. To calculate the corrections to (6.9) in powers 
of p / A )  one rewrites f of (6.7) as: 

'0 

.A +IPA dqqd-s+2" F (a ,  6 ;  c ;  p2/q2) - dqqd-s+2" 
0 

(6.1 1)  

after performing the angular integration and removing a factor of s d ,  which was 
absorbed into the coupling constant. a, b and c are given by: 

1 a = l - '  277 b z 2 - I  2(d + 77) c = zd. 

The first term in (6.11) is independent of A. Hence: 

_-  af - Ad-5+2"[F(a, b ;  c ;  p 2 / A 2 ) - -  11 - (277 -~ )€p"- ' -~+~"[ l+  O(p2/A2)1 
ai\ A-bm 

(6.12) 

(6.13) 

The two leading terms in f are 

(6.14) 
Inserting f back in the integral equation (6.5) the slow transient-the second term in 
(6 .12)-can be exactly cancelled against the p 2 ,  if w o  and h are appropriately chosen, 
Equation (6.5) is then satisfied up to corrections of O ( p 2 / A 2 ) .  

+EA'v-' 2 f(p, A) = [-CP~-'+~" P I 1  + W 2 / A 2 ) 1 .  
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where 
C* = -- 1 r ( d / 2 ) r ( - d / 6 ) r 2 ( d / 3 )  

2 I-( 2d/3)rz (  d / 6 )  

(6.15) 

(6.16) 

(6.17) 

(6.18) 

E* = (d  - 3) /3(6  - d )  (6.19) 

are the values of C and E ((6.10) ,  (6.13)) at q = ~ / 3 .  Note that this value of 77 satisfies 
the inequality (6 .8) .  

So far E was used only as a convenient notation, not as an approximation. If 
the expressions are expanded about E = 0 one finds: 

WO*’ =2E. 

This value coincides with the value of the fixed point found previously for the 
three-state Potts model (Amit 1976) in first order in E .  To make the comparison 
transparent one has to note that ( 1 )  at order E the renormalised and bare coupling 
constant are equal and ( 2 )  that the definitions of the coupling constant in equation (2.1) 
above and equation ( 2 . 1 )  of Amit (1976) are different: w i  = 9 u i ,  where uo is the 
dimensionless coupling constant of Amit (1976). 

Finally, equations (6.16) and (6.17) indicate that 

d = ~ = 3  

is a natural boundary, at which WO*’ runs away and then changes sign. 

7. The correlation function in the renormalisation group approach 

In the renormalisation group approach one computes the renormalisation constants, 
which render the theory finite at six dimensions, from them one obtains the Gell-Man- 
Low-Wilson functions, and finally the critical behaviour. 

In the present model, in the large N limit, the renormalisation of the coupling 
constant is trivial, because only the Born term contributes to r(3). Thus the relation 
between the bare coupling constant go and the renormalised one g is simply: 

go = z ; ~ / ~ ~  (7.1)  
where 2, is the field renormalisation constant. 

external momentum (Brezin et a1 1976, Amit 1976) then we can write: 
If K is the momentum scale which enters when the theory is renormalised at zero 

(7.2) 
The function /3, which determines the flow of the renormalised coupling constant, is 

= K - c / 2 g  = K - * / 2 z 3 / 2  
1 go. 

defined by: 

a 
p ( U )  = K--U 

aK 
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with go and A kept fixed. In our case: 

p ( u ) = & u  +&.q(u)  

where 

(7.3) 

(7.4) 
a 

7 ( u )  =-In -GI,,.* 
a K  

is the anomalous dimension function of the field. 
If @(U*) = 0, then ~ ( u * )  = 7-the critical exponent associated with the correlations 

function discussed in the previous section. But equations (7.3) and (7.4) imply directly 
that if a nontrivial fixed point (U* # 0) exists, then 

7 ( u * )  = 4 3 .  (7.5) 

8. The 4 *-insertion, critical behaviour in temperature 

To discuss the exponent v-the anomalous dimension of the b2 operator-we consider 
the function r(*vl). The inserted operator was defined in 0 5 as 

2 -  -m b =* *In. 

The equation satisfied by r(2,1) was derived in § 5, equation (5.17). 
We consider the massless theory at the special value of the coupling constant, given 

by equation (6.16). It should be remembered that the slow transients have been 
eliminated by this special choice of wo. Next we choose the special case in which the 
momentum of the b2  is equal to zero, as was mentioned at the end of § 5 .  In this case 
equation (5.17) assumes the form 

Considering equation (8.1) at small momenta ( p  << A) we substitute in it the Green 
function G in its scaling form (6.6). The difference between the new integral in the 
equation, following the substitution, and the original one is a finite constant in the small 
momentum limit. This follows simply from the two observations: 

(a) the integral term of (8.1) is dimensionless and 
(b) $ ( q )  and G(4)  are nonsingular at finite values of q. Thus, equation (8.1) can be 

rewritten, at small p ,  as 

where C* is given by (6.18) and 00 is a constant. Note that C* > 0 for 0 < E  < 6. For 
small values of e 

(8.4) c*-1 z E .  

To fix the notation we recall that if r(N,M) is scale invariant it obeys: 

(8.5) 
r ( N . M ) ( { A p , } )  = A d-Nd,+Md 2 ( N . M )  

+ r (w) 
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where 
d -1 

b -2(d-2+77) 

is the full scale dimension of 4, while 

-1 db2= - Y  

is the full scale dimension of 42; Y is the critical exponent of the correlation length. 

N = 2 ,  M = 1, 77 = ( e / 3 )  implies: 
Let us assume that for PIA<< 1 there exists a scaling limit of +(e); then (8.5) with 

(8 .6)  

The substitution of this scaling form in equations (8.3) would lead again to a change of 
the constant term, Qo-, QI. So 

d / 3 - l / u  + ( p )  = B(P/A) 

(8.7) d / 3 - 1 / ~  = Q~ + 2 C * - 1 ~ ~ 1 / ” - d / 3 1 ~ ( ~ )  B ( P / N  

Z,(p) = ddq(q2)-d/6-’/2” [ i P - 4 )  1 . 

where 

(8.8) 

The conditions for the ultraviolet and infra-red convergence of the integral I , ( p )  are, 

(8.9) 

2 -d/6 

O<q<,\ 

( 3 / 2 d )  < Re U < ( 3 / d ) .  

Suppose that these conditions are satisfied; in that case we make another trans- 
formation of the integral term in the equation and replace I,4( p )  by Za(p). This leads to 
another change of the constant term of the equation, Q1 + Q, since 

(8.10) 

Z,(p) can be computed by continuation in the number of dimensions. The result is: 

2C*-’Zm(p) = Dp d / 3 - 1 / ~  (8.11) 

T ( d / 6 ) r ( 2 d / 3 )  r ( d / 3  - 1 / 2 ~ ) r ( 1 / 2 ~  - d / 6 )  D = - 2  
r ( - d / 6 ) r ( d / 3 )  r ( 2 d / 3  - 1 / 2 u ) T ( 1 / 2 v  + d / 6 ) ’  

(8.12) 

So we are led to the equation: 

(8.13) d/3- l /v  B ( p /  ‘Iy = Q+DB(p/A)  

where Q is a constant. 
Equation (8.13) must be an identity. Hence 

D = 1  (8.14) 

is the equation for U .  The constant B can be determined from the equation Q = 0. The 
form of that equation depends on the high momentum behaviour of the two vertex 
functions. The equation for B is not pursued any further, since it is immaterial to our 
analysis. 
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9. Solution of the equation for v 

Equation (8.14), together with (8.12), can be written as: 

F ( x ,  d) = -2F(O, d ) ,  

with 

T(x + d/6)r(2d/3 - x)  
r ( x  - d/6)r(d/3 - x )  ' 

F(x,  d) = 

and x = 1/2u. The inequality (8.9) becomes, in terms of x, 

d/6 < R e  x < d/3. (9.3) 

The first surprise appears already for small values of E = 6 - d. Expanding both sides 

X I  = 1 + 5 ~ / 6  U1 =+-5€/12 ( 9 . 4 ~ )  

(9.46) 

of equation (9.1) to order E one finds two solutions: 

1 ~ 2 = 2 - 4 ~ / 3  ~2 = 4 + €16. 

These correspond to anomalous dimensions of q52 

61=Y; ' -2+f=2E ( 9 . 5 ~ )  

&=U;' - 2 f q  =2-7€ /3  (9.5b) 

Clearly, it is the first value which is the only one that can be obtained by 
renormalised perturbation theory. In fact ( 9 . 5 ~ )  is the same as the value obtained in 
previous studies of the Potts model near six dimensions (Priest and Lubensky 1976, 
Amit 1976). But the second value-(9.46) or (9.56) is also consistent with all the 
requirements placed on the variables. 

The special feature, apart from the appearance of two values of U, is that S 2  does not 
become small as E + 0. It tends to the finite value 2. This could never have been reached 
by perturbation theory. 

We return to discuss the implications of these results in the next section. But first we 
complete the analysis of equation (9.1). The appearance of the two roots becomes 
natural if one transforms the equation to another variable 

z ~ ( 1 2 / d ) ~ - 3 = ( 6 / d ~ ) - 3 .  (9.6) 

In terms of z 

with 6 = d/12. The range of convergence (9.3) is, in terms of z ,  

iRe z /  < 1 (9.8) 

and equation (9.1) becomes 

H ( z ,  8 )  = - 2H(3 ,  6). (9.9) 
The appearance of two roots is a simple consequence of the symmetry of H under 

z + -2. The values of z corresponding to (9.4) are 

2 1 , 2 =  T ( l - 2 € ) .  (9.10) 
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In 0 6 it was pointed out that d = 3 is a lower boundary for the present type of 
calculation. At this value the amplitude of G vanishes, h = 0, but the ‘coupling 
constant’ of equation (8.3) h 3 w t 2  = 2C*-’ # 0 and hence 4 # Qo. At d = 3 equation 
(9.9) can easily be solved, since 

F(x, 3)=H(z,a)=(1-t2)/16, 

F(0,  3) = H(3 , i )  = - 1. 
Hence 

- 
z1,2 = ki415 

( 9 . 1 1 ~ )  

(9.1 16) 

(9.12) 

and there is no scaling. The d = 3 case is consiL;rei in detail in Appendix 11. 
To investigate the range of dimensionalities within which equation (9.9) has real 

solutions we first note (See Appendix 111) that H ( z ,  S )  is a monotonically decreasing 
function of z for 0 <c z < 1. So at the real z axis in the region (9.8) it has its minima at 
z = f 1 and a maximum at z = 0. Hence the values of S for which real solutions exist are 
those for which H(1,S) S -2H(3,S) S H ( 0 , S ) .  But 

H(1,S) = 0 

for all S ,  while -2H(3,6) is positive in the range $ < S < $, namely, when 3 < d < 6. 
Values of d outside this range are of no interest anyway in the present calculation. 

The conclusion from the above consideration is that the condition for a real solution 
reduces to: 

H ( 0 , S )  5 -2H(3,S). (9.13) 

(See in this connection the discussion in the next section.) In figure 12 these two 
functions are plotted and we find that the inequality (9.13) is satisfied for: 

( 9 . 1 4 ~ )  0.477 = 60 G 6 S 0.5 

or 

5.72 = d o c  d <6. (9.14b) 

As d approaches the boundary of the region, i.e. d + do, z + 0. This is implied 

-2H(3,80) = H ( O ,  60)  (9.15) 

which together with equation (9.9) means that  SO) = 0. In other words, the point at 
which the real v disappears is well within the range (8.8), which ensures that all our 
assumptions about the convergence of the integral term of equation (8.7) (which led us 
to equations (8.13), (8.14)) are valid. 

simply by the fact that So is determined by the equality (9.13) 

10. Discrimination between the two values of Y 

In the previous section we encountered two related problems: the equation for Y (8.14) 
had two solutions for some dimensions (do < d < 6) and no real solution for other values 
of d (3 < d < do). In order to discriminate between the two values of Y, for d >do, we 
recall that the integral equation (5.17) follows from figure 11 which represents the 
partially summed perturbation theory series-a series of skeleton graphs. 
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I 
0.25 0.30 0.35 0.40 0.45 0.50 

6 = dl12 

Figure 12. A plot of H(O,6)  and - 2 H ( - 3 , 6 )  which determines So. 

However, the sum of the series of figure 11 is not the only solution of equation 
(5.17). The existence of another solution is due to the infra-red singularity of its kernel 
which violates the conditions for the Fredholm uniqueness theorem. 

It is this non-uniqueness which causes the existence of the second value of v. This 
second value has nothing to do with the series of skeleton graphs of figure 11 and we 
consider it as alien to the model. In order to be able to judge the relation of v to the 
series of skeleton graphs, we must consider its dependence on the coupling constant, but 
the latter was fixed before arriving at (8.14). 

To restore the dependence on the coupling constant we modify temporarily the 
series of figure 11 (and equation (5.17)), replacing g i  by Ag;, A is an arbitrary 
coefficient which should be set equal to unity at the end. 

The equation (9.9) determining v ( A )  (or r (A))  becomes: 

H ( z ,  8) = -2AH(3,6)  (10.1) 

The condition (9.13) is, in terms of A 

Ao(6)  1 (10.2) 

(10.3) 

The modified series of figure 11 reduces to unity at A =O. From equation (8.6) it 
therefore follows that the acceptable A dependence of v must be such that 

lim v ( A )  = ( 3 / d ) ,  lim z ( A )  = -1. 
A -0 A -0 

(10.4) 
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Let us denote this solution by v+(A),  ,?+(A). There exists a second solution 
z-(A) = -z+(A) at any A, which tends to + 1 as A 3 0 and which must be rejected. With 
this in mind, we consider three possible pictures, 

(1) If Ao(S)> 1, then 

z+(A) < 0 z-(A) > 0 (10.5) 

for any 0 S A  c 1, and the two solutions are separable and identifiable at A = 1. This is 
the case at do < d < 6 as is seen from figure 12. In this range of space dimensions the 
skeleton graph ‘perturbation theory’ prescribes the choice of solution with vanishing 
anomalous dimensions as d + 6. Note that A o +  00 as d + 6. 

(2) If Ao(S) = 1 (this is the case at d = do) then 

z + ( l )  = L(1) = 0 (10.6) 

and there is a single real value of v(v = 2/d0). 
(3) If 0 < Ao(S) < 1, the two solutions coalesce at A = A. < 1: 

zT(Ao) = z-(Ao) = 0 (10.7) 

and are equally acceptable at A = 1, or rather, they are equally unacceptable: both of 
them are complex at A > Ao,  because ,?’(A) changes its sign at A = Ao.  

To convince oneself one simply notes that 
H ( z ,  8 )  is an even function of z and it is z2(A) which is determined by equation 

(10.1). Note also that 2’ = 0 cannot be a minimal value of z 2 ,  since az’/aA is not zero at 
z z  = 0 (see Appendix 111, equation (A111.6)). 

In figure 12 one sees that the existence of such A. is the case at d <do.  A. is a branch 
point of I“’~”, which implies that the series of figure 11 is divergent at A = 1 > A o .  Our 
considerations show that the analytical continuation in A (with the help of equation 
(5.17) is not a way out at d <do.  

11. Discussion 

Clearly, the model, in the limit of infinite I, is completely soluble. Equations (5.15) and 
(5.17) can be fully analysed, as well as other relevant quantities. Here we have not 
embarked on the detailed solution. Instead, we described the model and presented a 
preliminary study of its asymptotic behaviour. The main purpose being to show that the 
model is not only soluble, but may contain some surprises as well. 

We have found, by studying the infinite 1 limit of the model, that the two point 
function scales for d everywhere between 3 and 6. Its temperature derivative scales only 
in a small subinterval of dimensions (see equation (9.14)). What is more is that in this 
small range of d the anomalous dimensions of #J2-or the exponent v-can have two 
values; one which vanishes as d + 6 the other remaining finite. 

The discrimination between the two values is done by considering the solution of the 
problem in a skeleton expansion. We find that the correlation functions with # J 2  

insertions develop a branch point at a finite value of the coupling constant-a rather 
unexpected result. 

In fact, the absence of scaling for d < do may seem in contradiction with renor- 
malisation group analysis. One usually tends to conclude that all vertex functions scale 
together, since at the fixed point only constants are left in all the renormalisation group 
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equations. The function r(*,l) satisfies the equation: 

with 'y42 - the anomalous dimension function of the operator c$*. At the point U = U*, at 
which p = 0, I'('*') would seem to scale, just like I"'). 

However, the appearance of a branch point in 1'('*1) entails a branch point in Y+~(u) .  
The cut cannot, of course, be detected in perturbation theory. 

But, a cut in r(231) implies a cut in r(') as a function of temperature (or mass). Away 
from the critical temperature (as the mass moves away from zero), 2,. enters in r(') as 
the temperature renormalisation constant, and with it the cut. 

This may be a symptom of the general pathological nature of d3 field theories. Yet it 
is difficult to conceive of how the addition of a d4 term may change the situation when a 
massless theory exists. The solutions found (see equations (6.6), (6.15-17), (8.6), 
(8.12), (8.14)) demonstrate that massless states are indeed present and thus the d4 term 
must be irrelevant. But one must still make sure that at the point of vanishing mass the 
symmetry is not yet broken. 

This requires further analysis, and touches upon the general problem of critical 
points of systems with d3 interactions (Priest and Lubensky 1976, Amit 1976). 
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Appendix I. Asymptotics of 3nj-symbols 

In this appendix we present the arguments leading to our conclusion that isospin graphs 
which are not fully two-particle reducible become negligible as 1 + 00. In other words, 
this is our defence of equation (5.4). We do not possess a full proof. Instead we argue as 
follows: 

(A) We show that the 3nj-symbols of the first and second kind do indeed satisfy 
(5.3). 

(B) Numerical computations of more complex 3nj-symbols convince us that for the 
same 1 and n, the 3nj-symbols of the first and second kind are uniformly greater than all 
the other 3nj-symbols. We present some of these numerical results. 

We start with some general considerations: 
Any conventional 3nj-symbol can be represented by a sum 

(AI.l) 

where N = n + k  - 1, ( x ) = 2 x  + 1. 

momenta: 
Wigner (1959) proposed an asymptotic estimate of the 6j-symbol for large angular 

1 v2>o 
(AI.2) 

0 vz<o 
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0 A: A: A: 1 
A,’ 0 A i  A: 1 

z53’V2= A: A i  0 A: 1 
A: A: A; 0 1 
1 1 1 1 0  

= 2 J ( { A i } ) .  (AI.3) 

(AI.4) 

The function C was found by Ponzano and Regge (1968); the average of C 2  over 
several contiguous values of li at V 2  > 0 is t .  Equation (AI.4) is an excellent asymptotic 
approximation for the 6j-symbol which turns out to be satisfactorily accurate even for 
small values of { l i } .  But it is certainly inaccurate in the neighbourhood of the point 
v = o .  

An asymptotic formula, which is correct in the transitional region V = 0, was given 
by Ponzano and Regge (1968): 

here Ah, h = 1 , .  . . , 4 are the areas of the faces of the tetrahedron, Ai(z) is the Airy 
function. 

We simplify the analysis using Wigner’s estimate (AI.2) everywhere except in the 
transitional region, where we approximate the 6j-symbol by a constant, which is the 
value of equation (AIS)  at the point V = 0. 

We insert this approximation in equation (AI. 1) and suppress all oscillations-those 
present in the 6 j  symbols as well as the explicit ones ((-1)*) in equation (AI.1). This 
way we majorise the sum. The application of Wigner’s estimate neglects that part of the 
sum (AI.l)  in which V :  < 0. This part cannot influence the asymptotic behaviour of the 
sum since the 6j-symbols decrease very rapidly in this region. 

In terms of the variables 

(AI.6) 1 A = 1 + ~  

(A1.7) 

Wigner’s formula (AI.2) for a 6j-symbo1, entering equation (ALl),  takes the form 

9 (AI.8) (6j) I: (2,,.)-1/2A -3 /23-1 /4  

where 

.f = JI, = 1  

is a function of 6, only. 
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The value of the 6j-symbol at the transitional point V = 0 is, according to equation 
(AI33  

(AI.9) 

We denote the ‘width’ of the transitional region by U. This is some small value of the 
volume of the tetrahedron. Approximating the 6j-symbol by equation (AI.8) for V > U 
and by equation (AI.9) for 0 < V < U leads to the expression 

(AI. 10) 

where Tn(A) is the contribution of the terms in which some of the V,’s are in the 
transitional region V:  < v f .  

(i) Consider first the 3nj-symbols of the first and second kind, when in equation 
(AI.1) there is a single sum (k = l), as well as a single integral in equation (AI.10). 

All the n 6j-symbols in equation (AI. 1) ( N  = n in this case) are identical (recall that 
all the 3n angular momenta of the 3nj-symbol considered are equal to I ) .  Equation 
(AI.lO) obtains the form: 

/(3nj)1,2/ =const. J d~ . 5 [ j ( 0 1 - ~ / ~  + T n  (A  (AI. 11) 

j ( 5 )  = 45’(3 -45’) E 165’(& - 6’) (AI.12) 

t o  = (J312) V(50) = 0 (AI.13) 

When V = 0, all the four areas Ah are identical and equal to 31J2 2--’ A’; thus the 

/6j(&J1= [3r(2/3)]-’A-4J3. (AI. 14) 

The boundary of the transitional region can be naturally defined as that value of 
5 = to- A 5  for which Wigner’s expression (AI.8) obtains the value (A1.14). It turns out 
to be 

A 5  - A -2/3.  (AI.15) 

So-A& 

( 4 A ) - ’  

with 

value of the 6j-symbol at that point is, according to equation (A1.9), 

So the term T,,(A) of equation (AI.11) is 

(AI.16) T,(A)=const , A ’ . A - ’ ’ ~ . A - ~ ~ / ~ =  const . A -4n/3+4/3 

The integral in equation (AI . l l )  can be represented as 

1((4A)-’5 50 -A5)=1((4A)-’ ,  51)+1(51, 52)+1(52, [o-A&) 

51<( 1 

(AI.17) 
where 

50- AS-  52<< 1 

are A independent small numbers, so that 

(AI.18) 
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while I(&, 5 2 )  is finite. Thus the term 
Tn(A ) (equation (AI. 16)) and equation (AI. 11) becomes 

I(&, to - A t )  is of the same order as 

(AI. 20) 

In equation (AI.20) the first ('infrared') term dominates for n t 4, which gives a = 1 
in equation (5.3). For n = 3 the dominant term is the second one; that is, the 9j-symbol 
falls off as 

(ii) For n > 4 there are more than two kinds of 3nj-symbols. The 3nj  symbols of the 
kinds other than the first or second one are given by multiple sums (k > 1 in equation 
(AI.l)), which complicates the analysis. Proceedings as in equation (AI.17) and using 
equation (AI.lO) we see that the 'middle part' of the integral (the analogue of I ( ( I , & ) )  
contributes 

A ( - 3 n t k + 3 ) / 2  (AI.21) 

which implies a = (n - k - 1)/2. 
It can be shown, that any 3nj-symbol may be represented by equation (AI.l)  with 

k s n - 2, which provides (for the contribution of this term) a 2 1/2. But this inequality 
for k depends on the representation of the 3nj-symbol. In fact, in some of the 
commonly used formula it does not hold. The graph of the 3nj-symbol can be 
transformed to obtain different representations of that symbol in terms of lower ones 
(with less indices). The common representation leads to an expression in terms of the 
simplest lower 3nj-symbols. But this does not necessarily provide the lowest value for k 
in equation (AI.1). 

/(3nj)1.21 e C ~ A - "  + c ~ A - ~ ~ / ~ + ~  + C f h  -4n/3+4/3 

(or faster), implying a = 1/2.  

For example, the 15j-symbol of the 5th kind is commonly represented as 

(15j)s = Xxi)(x2)( -)"6i(xi)6i(xz)[9j(~1, xJI2 (AI.22) 

which leads to equation (AI.1) with k = 4, if we express the 9j-symbol in terms of the 
6j-symbols. But it can be represented as 

( 1 5 j ) s  = ~ ( x I ) ( x z ) ( - ) ~ ~ ~ ( x I ) ~ ~ ( x z ) ~ ~ ( x ~ ,  ~ 2 ) 1 2 j ( ~ 1 ,  ~ 2 )  (AI.23) 

which implies k = 3. Equation (AI.23) is obtained with the help of the graphical 
decomposition, shown in figure 13 and by using the identity of figure 7 for the '3-particle 
reducible' closed isospin graph. 

The other parts of the multiple integral in equation (AI.lO) have not been consi- 
dered in the general case. Consideration of the 15j- and 18j-symbols raises a hope that 
the contribution of the transitional region does not dominate and that the 'infrared' 
behaviour is not too singular, so that the inequality a > 0 always holds. 

\ /' 
\ I  

'<--A 

Figure 13. The graphical decomposition 5th kind. 
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3nj-symbols of different kinds have been computed for n s 8 for many values of 1. 
Samples of 15j- and 18j-symbols are plotted in figure 14. In every case we plot the ratio 
of the computed conventional 3nj-symbol divided by (21 + l)-'"-''-the trivial 3ni- 
symbol, represented by a fully 2PR graph, equation (5.1). For comparison we plot also 
the same ratio with the estimate (5.3) for the 3nj-symbol, if Q = 1/2; i.e. (21 + l)-'". 

Without exception, for all values of I ,  the 3nj-symbols of the first and second kind 
are greater than the others for the same values of n and 1. 

10 4 1  t, 7 . 

Figure 14. The 15j-symbols and a few kinds of the lbj-symbols compared with the fully 
2PR graphs. 1(3nj)/(2[+ l)"- '  are plotted, together with (2[+ l)-'", which would have 
been the line if a were 4. The numbers which correspond to the kinds of 15j- and 
18j-symbolsareasfollows. In(a):., 1 ;0 ,2;A,3;V,4; . ,5  and@):., 1 ; 0 , 2 ; A , 4 ; V , 7 ;  ., 11; 0,18. 

Appendix 11. Solution in three dimensions 

From equations (6.16) and (6.19) it follows that d = 3 is a pole of the function w g 2 ( d ) .  
On the other hand hid )  = 0 at d = 3 (equation (6.17)), so the expression (6.6) for G(p) 
vanishes at d = 3. 

But if we consider equation (6.5) at d # 3 with w o  = W O *  ( d )  and insert into it 

G(p)=hA-"3p-d'3 (AII.l) 

with h = h ( d ) ,  we find that equation (6.5) is exactly satisfied in the limit d + 3. 

come to an integral equation 
Inserting equation (AIL 1) into equation (5.17) and performing the limit d + 3 we 

( AII. 2) 

with 
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Equation (AII.2) is an integral form of the Schrodinger equation 

(AII.4) h2 2h2 1 
2m m la-rj la + r /  
-A$ - U(r)$ = 0,  U ( r )  = -- 

for the zero energy stationary state of a particle moving in the potential field U ( r ) .  
We do not pursue equations (A11.2), (AII.4) any further at a nonvanishing value of a 

and return to the function $(p)( equation (8.2)) at p1 = -p2  = p .  When a = 0, equation 
(AII.4) coincides with the equation considered in 0 35 of Landau and Lifshitz (1959). 
The integral equation (AII.2) implies that $ ( r )  must be spherically symmetric; thus the 
‘angular momentum’ I = 0. 

In the notation of Landau and Lifshitz (1959) 
- 

p = (2h2/m) y = 4  s1,2 = -$* (i/2)415. (AII.5) 

The contact with the notation of 0 0  8 , 9  (see e.g. equations (8.6), (9.6) is: 
1 

s1,2 = -2(1+ 2,) 
and thus: 

- 
z* = ~ i J 1 5 .  

(AII. 6) 

(AII. 7) 

If we modify equations (A11.2), (A11.4), introducing the ‘coupling constant’ A, as in 0 10, 
equation (AII.7) changes to 

(AII.8) 

A. of 0 10 is now equal to 1/16. It is the branch point of the function z(A)= 

The general solution of equation (AII.4) is 

$ ( r )  = r-1i2(B+r-Z+’2 + B-r-*-i2) .  

Z* = F JI - 16A. 

J1- 16h. z,(A) are the two branches of this function. 

(AII.9) 

The requirement, $ ( r )  = 1 at A = 0, chooses the solution with B- = 0 at A < 1/16, but it 
fails to distinguish between the two branches z* at A > 1/16. Equation (AII.9) at A = 1 
can be rewritten as 

with constant ro  and r l .  No choice of these constants can provide scaling. 

Appendix 111. Some properties of the function H 

It follows from the definition of H(z ,  6 )  (equation (9.7)) that 

(aH/az) = H S { $ ( ( ~ + Z ) S ) - $ ( ( ~ - Z ) S ) - $ ( ( ~  + z ) s ) + $ ( ( ~  -2)s)) 
where 

so 
3 6 + k  aH W 

az2- k = O  [ ( 5 S + k ) 2 - ~ 2 S 2 ] [ ( S + k ) 2 - ~ 2 8 2 ]  
----8S3H 

(AII.10) 

(AIII. 1) 

(AIII.2) 

(AIII.3) 
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(AIII.4) 

for z 2 < 1 .  
Equation (10.1) implies that 

1 ah 1 aH 
A az’-H a.2‘ 

Thus 

(AIII.5) 

(AIII.6) 

is finite. 
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